

COURSE HANDOUT

Course Code ACSC13

Course Name Design and Analysis of Algorithms

Class / Semester IV SEM

Section A-SECTION

Name of the Department CSE-CYBER SECURITY

Employee ID IARE11023

Employee Name Dr K RAJENDRA PRASAD

Topic Covered Efficient non recursive binary tree traversal algorithms

Course Outcome/s
Make Use of appropriate tree traversal techniques for finding shortest
path.

Handout Number 21

Date

Content about topic covered : Efficient non recursive binary tree traversal algorithms

Following are three different tree traversal techniques

1. Pre-order: In this pre-order traversal, traverse the tree to visit in the order of left
node, right node, and then root node

2. In-order: In this pre-order traversal, traverse the tree to visit the root node as first,
then left node, and finally to visit the right node.

3. Post-order: In this pre-order traversal, traverse the tree to visit the left node as first,
then root node, and finally to visit the right node.

These traversals are implement with the non-recursive approach (or also called as iterative
approach) and these algorithms are as follows:

1. Pre-order traversal with non-recursive :

Algorithm Approach for Pre-order traversal

Consider the following tree.

Start with node 4 and push it onto the stack.

Since the stack is not empty, POP 4 from the stack, process it and PUSH its left(7) and
right(18) child onto the stack.

Repeat the same process since the stack is not empty. POP 7 from the stack, process it
and PUSH its left(8) and right (13) child onto the stack.

Again, POP 8 from the stack and process it. Since it has no right or left child we don’t
have to PUSH anything to the stack.

Now POP 13 from the stack and process it. We don’t have to PUSH anything to the
stack because it also doesn’t have any subtrees.

POP 18 from the stack, process it and PUSH its left(5) and right(2) child to the stack.

Similarly POP 5 and 2 from the stack one after another. Since both these nodes don’t
have any child, we don’t have to PUSH anything onto the stack.

The nodes are processed in the order

[4, 7, 8, 3, 18, 5, 2]
. This is the required preorder traversal of the given tree.

2. In-order traversal with non-recursive :

Consider the following tree.

Start with node 4 and call it PTR. Since PTR is not NULL, PUSH it onto the stack.

Move to the left of node 4. Now PTR is node 7, which is not NULL. So PUSH it onto the
stack.

Again, move to the left of node 7. Now PTR is node 8, which is not NULL. So PUSH it
onto the stack.

When we move again to the left of node 8, PTR becomes NULL. So POP 8 from the
stack. Process PTR (8).

Move to the right child of PTR(8), which is NULL. So POP 7 from the stack and process
it. Now PTR points to 7.

Move to the right child(13) of PTR and PUSH it onto the stack.

Move to the left of node 13, which is NULL. So POP 13 from the stack and process it.

Since node 13 don’t have any right child, POP 4 from the stack and process it. Now PTR
points to node 4.

Move to the right of node 4 and put it on to the stack. Now PTR points to node 18.

Move to the left(5) child of 18 and put it onto the stack. Now PTR points to node 5.

Move to the left of node 5, which is NULL. So POP 5 from the stack and process it.

Now, move to the right of node 5, which is NULL. So POP 18 from the stack and process
it.

Move to the right(2) of node 18 and PUSH it on to the stack.

Since node 2 has left child, POP 2 from the stack and process it. Now the stack is empty
and node 2 has no right child. So stop traversing.

The nodes are processed in the order

[8, 7, 13, 4, 5, 18, 2]
This is the required in order traversal of the given tree.

3. Pre-order traversal with non-recursive :

